Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Womens Health (Larchmt) ; 31(6): 779-786, 2022 06.
Article in English | MEDLINE | ID: covidwho-1901043

ABSTRACT

Background: The impact of gender on outcomes in patients suffering from coronavirus disease 2019 (COVID-19) is frequently debated. However, the synchronous influence of additional risk factors is seldom mentioned. With increasing emphasis on identifying patients who are at risk of complications from COVID-19, we decided to conduct a retrospective review to assess the influence of age and body mass index (BMI) on gender-based differences in outcomes. Materials and Methods: A retrospective review of 1288 patients was conducted at a tertiary care hospital. Binary logistic regression was used to assess differences in risk factors and outcomes between genders. The associations between predictors and outcomes were described using odds ratios in tables, forest plots, and regression curves plotted using Sigma Plot. Results: Majority of patients were women (53.6% vs. 46.4%). Median BMI in men was higher than women (p = 0.003). Key predictors for all-cause morbidity/mortality in men were diabetes, chronic kidney disease, and regular use of angiotensin-converting enzyme inhibitors. In women, age >65 and regular use of inhaled steroid were additional risk factors. Men had a higher risk of acute respiratory distress syndrome (2.83 [1.70-4.70]), acute renal failure (1.96 [1.20-3.20]), and had a longer length of stay (0.11 [1.52]). Obesity has a stronger bearing on outcomes in women, and age has a more pronounced effect on outcomes in men. Conclusion: Extremes of BMI and older age are associated with worse outcomes in both men and women. Obesity has a stronger bearing on outcomes of COVID-19 infection in women, while the effect of older age on outcomes is more pronounced in men.


Subject(s)
COVID-19 , Body Mass Index , COVID-19/epidemiology , Female , Humans , Male , Obesity/epidemiology , Retrospective Studies , Risk Factors , Sex Factors
2.
Cell Rep Med ; 2(5): 100287, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1683718

ABSTRACT

Mechanisms underlying severe coronavirus disease 2019 (COVID-19) disease remain poorly understood. We analyze several thousand plasma proteins longitudinally in 306 COVID-19 patients and 78 symptomatic controls, uncovering immune and non-immune proteins linked to COVID-19. Deconvolution of our plasma proteome data using published scRNA-seq datasets reveals contributions from circulating immune and tissue cells. Sixteen percent of patients display reduced inflammation yet comparably poor outcomes. Comparison of patients who died to severely ill survivors identifies dynamic immune-cell-derived and tissue-associated proteins associated with survival, including exocrine pancreatic proteases. Using derived tissue-specific and cell-type-specific intracellular death signatures, cellular angiotensin-converting enzyme 2 (ACE2) expression, and our data, we infer whether organ damage resulted from direct or indirect effects of infection. We propose a model in which interactions among myeloid, epithelial, and T cells drive tissue damage. These datasets provide important insights and a rich resource for analysis of mechanisms of severe COVID-19 disease.

3.
J Virol ; 95(14): e0040421, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1501539

ABSTRACT

Emerging SARS-CoV-2 variants of concern that overcome natural and vaccine-induced immunity threaten to exacerbate the COVID-19 pandemic. Increasing evidence suggests that neutralizing antibody (NAb) responses are a primary mechanism of protection against infection. However, little is known about the extent and mechanisms by which natural immunity acquired during the early COVID-19 pandemic confers cross-neutralization of emerging variants. In this study, we investigated cross-neutralization of the B.1.1.7 and B.1.351 SARS-CoV-2 variants in a well-characterized cohort of early pandemic convalescent subjects. We observed modestly decreased cross-neutralization of B.1.1.7 but a substantial 4.8-fold reduction in cross-neutralization of B.1.351. Correlates of cross-neutralization included receptor binding domain (RBD) and N-terminal domain (NTD) binding antibodies, homologous NAb titers, and membrane-directed T cell responses. These data shed light on the cross-neutralization of emerging variants by early pandemic convalescent immune responses. IMPORTANCE Widespread immunity to SARS-CoV-2 will be necessary to end the COVID-19 pandemic. NAb responses are a critical component of immunity that can be stimulated by natural infection as well as vaccines. However, SARS-CoV-2 variants are emerging that contain mutations in the spike gene that promote evasion from NAb responses. These variants may therefore delay control of the COVID-19 pandemic. We studied whether NAb responses from early COVID-19 convalescent patients are effective against the two SARS-CoV-2 variants, B.1.1.7 and B.1.351. We observed that the B.1.351 variant demonstrates significantly reduced susceptibility to early pandemic NAb responses. We additionally characterized virological, immunological, and clinical features that correlate with cross-neutralization. These studies increase our understanding of emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , Pandemics , SARS-CoV-2/immunology , Adult , Cross Reactions , Humans , Male
4.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1403154

ABSTRACT

Endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. Constitutively, the endothelial surface is anticoagulant, a property maintained at least in part via signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant endothelial dysfunction and alterations in the Tie2/angiopoietin axis. Primary HUVECs treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited the expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. Lung autopsies from patients with COVID-19 demonstrated a prothrombotic endothelial signature. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity, and the highest levels were associated with worse survival. These data highlight the disruption of Tie2/angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Our findings provide rationale for current trials of Tie2-activating therapy with AKB-9778 in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Endothelial Cells/drug effects , Protective Agents/pharmacology , Receptor, TIE-2/metabolism , Adult , Aged , Aged, 80 and over , Angiopoietin-2/metabolism , Aniline Compounds , Female , Gene Expression , Humans , Lung , Male , Middle Aged , Receptor, TIE-2/genetics , SARS-CoV-2 , Signal Transduction , Sulfonic Acids , Vascular Diseases/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL